If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4b^2-43b+63=0
a = 4; b = -43; c = +63;
Δ = b2-4ac
Δ = -432-4·4·63
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{841}=29$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-43)-29}{2*4}=\frac{14}{8} =1+3/4 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-43)+29}{2*4}=\frac{72}{8} =9 $
| 13=13r-11 | | 9-(8p-5)+4=6(2p+1) | | 4-5(x-7)=35 | | I.3x2–5x–12=0, | | 565.2=4/3x3.14(6)3 | | s=-16(1008)^2=256(1008) | | 4x-16x+64=0 | | 5/3X+3=x+7 | | 12x^2-180x-204=0 | | 12x^2-180x-192=0 | | 3/2x+1/9=1/6x-1/3 | | (3x-2)=(7x-6) | | 3(4-x)-(2x+3)=5+3(x-4) | | 4(2-x)-(x+1)=5+6(x-7) | | 4(2-x)-(x+1=5+6(x-7) | | -2x^2-24x-71=0 | | 0.07(2t-5)=0.14(t-3)+0.07 | | 0.3x+0.5=0.7x-0.7 | | 64x^2+40x+1=0 | | 64x^2+40x=0 | | 12x+10=2(4x+7)+4x-4 | | 17y+2(y+2)=40 | | y2+3y+5=0 | | x=2(4x-3) | | 0.20(y-3)+0.08y=0.16y-1.8 | | 32^2-32x+8=0 | | 0.20(y-3)+0.08y=0.16y-1.6 | | 0.20(y-3)+0.08=0.16y-1.8 | | x+6/x-9=9/x | | 3(x+8)+5-3x=2x | | -2y-14=9y+19 | | 3^4x-3=81 |